Package: SIHR 2.1.0
Zijian Guo
SIHR: Statistical Inference in High Dimensional Regression
The goal of SIHR is to provide inference procedures in the high-dimensional generalized linear regression setting for: (1) linear functionals <doi:10.48550/arXiv.1904.12891> <doi:10.48550/arXiv.2012.07133>, (2) conditional average treatment effects, (3) quadratic functionals <doi:10.48550/arXiv.1909.01503>, (4) inner product, (5) distance.
Authors:
SIHR_2.1.0.tar.gz
SIHR_2.1.0.zip(r-4.5)SIHR_2.1.0.zip(r-4.4)SIHR_2.1.0.zip(r-4.3)
SIHR_2.1.0.tgz(r-4.4-any)SIHR_2.1.0.tgz(r-4.3-any)
SIHR_2.1.0.tar.gz(r-4.5-noble)SIHR_2.1.0.tar.gz(r-4.4-noble)
SIHR_2.1.0.tgz(r-4.4-emscripten)SIHR_2.1.0.tgz(r-4.3-emscripten)
SIHR.pdf |SIHR.html✨
SIHR/json (API)
# Install 'SIHR' in R: |
install.packages('SIHR', repos = c('https://zywang0701.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/zywang0701/sihr/issues
Last updated 7 months agofrom:f7e6b78586. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 27 2024 |
R-4.5-win | OK | Oct 27 2024 |
R-4.5-linux | OK | Oct 27 2024 |
R-4.4-win | OK | Oct 27 2024 |
R-4.4-mac | OK | Oct 27 2024 |
R-4.3-win | OK | Oct 27 2024 |
R-4.3-mac | OK | Oct 27 2024 |
Dependencies:bitbit64clarabelcodetoolsCVXRECOSolveRforeachglmnetgmpiteratorslatticeMatrixosqpR6RcppRcppEigenRmpfrscsshapesurvival
Intro of Methods
Rendered fromIntroMethod.pdf.asis
usingR.rsp::asis
on Oct 27 2024.Last update: 2024-04-11
Started: 2024-04-11
Intro of Usage
Rendered fromIntroUsage.pdf.asis
usingR.rsp::asis
on Oct 27 2024.Last update: 2024-04-11
Started: 2024-04-11
Quick Start to SIHR
Rendered fromSIHR.Rmd
usingknitr::rmarkdown
on Oct 27 2024.Last update: 2024-04-12
Started: 2024-04-11