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The package SIHR aims to perform statistical inference in high-dimensional generalized linear models
with continuous and binary outcomes. It provides tools for constructing confidence intervals and performing
hypothesis tests for low-dimensional objectives in both one-sample and two-sample regression settings.

1 Introduction

We consider the high-dimensional GLMs: for 1 ≤ i ≤ n,

E(yi | Xi·) = f(X⊺

i·β), with f(z) =

{
z for linear model;

exp (z)/ [1 + exp (z)] for logistic model;
(1)

where β ∈ Rp denotes the high-dimensional regression vector, yi ∈ R and Xi· ∈ Rp denote respectively the
outcome and the measured covariates of the i-th observation. Throughout the paper, define Σ = EXi·X

⊺

i·

and assume β to be a sparse vector with its sparsity level denoted as ∥β∥0. In addition to the one-sample
setting, we examine the statistical inference methods for the two-sample regression models. Particularly, we
generalize the regression model in (1) and consider:

E(y
(k)
i | X(k)

i· ) = f(X
(k)⊺
i· β(k)) with k = 1, 2 and 1 ≤ i ≤ nk, (2)

where f(·) is the pre-specified link function defined as (1), β(k) ∈ Rp denotes the high-dimensional regression

vector in k-th sample, y
(k)
i ∈ R and X

(k)
i· ∈ Rp denote respectively the outcome and the measured covariates

in the k-th sample.

1.1 Package Components

This package consists of five main functions LF, QF, CATE, InnProd, and Dist implementing the statistical
inferences for five different quantities, under the one-sample model (1) or two-sample model (2).

1. LF, abbreviated for linear functional, implements the inference approach for x⊺

newβ, with xnew ∈ Rp

denoting a loading vector. With xnew = ej as a special case, LF infers the regression coefficient βj .

2. QF, abbreviated for quadratic functional, makes inferences for β⊺Aβ. A is either a pre-specified sub-
matrix or the unknown covariance matrix Σ.

3. CATE, abbreviated for conditional average treatment effect, is to make inference for f(x⊺

newβ
(2)) −

f(x⊺

newβ
(1)). This difference measures the discrepancy between conditional means, closely related to

the conditional average treatment effect for the new observation with covariates xnew.

4. InnProd, abbreviated for inner products, implements the statistical inference for β(1)⊺Aβ(2). The inner
products measure the similarity between the high-dimensional vectors β(1) and β(2), which is useful in
capturing the genetic relatedness in the GWAS applications.

5. Dist, short-handed for distance, makes inferences for the weighted distances γ⊺Aγ with γ = β(2)−β(1).
The distance measure is useful in comparing different high-dimensional regression vectors.
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1.2 Outlines

In section 2.2, we propose a unified inference method for x⊺

newβ under linear and logistic outcome models.
We also discuss inferences for quadratic functionals β⊺

GAβG and β⊺

GΣG,GβG in section 2.3. In the case
of the two-sample high-dimensional regression model (2), we develop the inference method for conditional

treatment effect ∆(xnew) = f(x⊺

newβ
(2)) − f(x⊺

newβ
(1)) in section 2.4; we consider inference for β

(1)⊺
G Aβ

(2)
G

and β
(1)⊺
G ΣG,Gβ

(2)
G in section 2.5 and γ⊺

GAγG and γ⊺

GΣG,GγG with γ = β(2) − β(1) in section 2.6.

2 Methodologies

We briefly review the penalized maximum likelihood estimator of β in the high-dimensional GLM (1), defined
as:

β̂ = arg min
β∈Rp

ℓ(β) + λ0

p∑

j=2

∥X·j∥2√
n

|βj |, (3)

with X·j denoting the j-th column of X, the first column of X set as the constant 1, and

ℓ(β) =

{
1
n

∑
i=1 (yi −X⊺

i·β)
2

for linear model

− 1
n

∑n
i=1 yi log

[
f(X⊺

i·
β)

1−f(X⊺

i·
β)

]
− 1

n

∑n
i=1 log (1− f(X⊺

i·β)) for GLM with binary outcome.
. (4)

The tuning parameter λ0 ≍
√
log p/n is chosen by cross-validation. In the penalized regression (3), we do

not penalize the intercept coefficient β1. The penalized estimators have been shown to achieve the optimal
convergence rates and satisfy desirable variable selection properties [10, 1, 14, 12]. However, these estimators
are not ready for statistical inference due to the non-negligible estimation bias induced by the penalty term
[11, 8, 13].

2.1 Linear functional for linear model

To illustrate the main idea, we start with the linear functional for the linear model, which will be extended to
a unified version in the section Linear functional for GLM. For the linear model in (1), we define ϵi = yi−X⊺

i·β
and rewrite the model as yi = X⊺

i·β + ϵi for 1 ≤ i ≤ n.

Given the vector xnew ∈ Rp, a natural idea for the point estimator is to use the plug-in estimator x⊺

newβ̂

with the initial estimator β̂ defined in (3). However, the bias x⊺

new(β̂ − β) is not negligible. The work Cai
et al. [3] proposed the bias-corrected estimator as,

x̂⊺

newβ = x⊺

newβ̂ + û⊺
1

n

n∑

i=1

Xi·

(
yi −X⊺

i·β̂
)
, (5)

where the second term on the right hand side in (5) is the estimate of negative bias −x⊺

new(β̂ − β), and the
projection direction û is defined as

û = arg min
u∈Rp

u⊺Σ̂u subject to: ∥Σ̂u− xnew∥∞ ≤ ∥xnew∥2µ0 (6)
∣∣∣x⊺

newΣ̂u− ∥xnew∥22
∣∣∣ ≤ ∥xnew∥22µ0, (7)

where Σ̂ = 1
n

∑n
i=1 Xi·X

⊺

i· and µ0 ≍
√
log p/n. The bias-corrected estimator x̂⊺

newβ satisfies the following
error decomposition,

x̂⊺

newβ − x⊺

newβ = û⊺
1

n

n∑

i=1

X⊺

i·ϵi

︸ ︷︷ ︸
asymp. normal

+
(
Σ̂û− xnew

)⊺

(β − β̂)

︸ ︷︷ ︸
remaining bias

.

The constrained optimization problem in (6) and (7) is designed to minimize the error on the right-hand
side of the above equation: the first constraint in (6) controls the ”remaining bias” term in the above
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equation while the objective function in (6) is used to minimize the variance of the ”asymp. normal” term.
Importantly, the second constraint in (7) ensures the standard error of the ”asymp. normal” term always
dominates the ”remaining bias” term. Based on the asymptotic normality, we construct the CI for x⊺

newβ as

CI =
(
x̂⊺

newβ − zα/2

√
V̂, x̂⊺

newβ + zα/2

√
V̂
)

with V̂ =
σ̂2

n
û⊺Σ̂û,

where σ̂2 = 1
n

∑n
i=1(yi −X⊺

i·β̂)
2, and zα/2 denotes the upper α/2 quantile for the standard normal distribu-

tion.

2.2 Linear functional for GLM

In this subsection, we generalize the inference method specifically for the linear model in Linear functional
for linear model to GLM in (1). Given the initial estimator β̂ defined in (3), the key step is to estimate the

bias x⊺

new(β̂ − β). We can propose a generalized version of the bias-corrected estimator for x⊺

newβ as

x̂⊺

newβ = x⊺

newβ̂ + û⊺
1

n

n∑

i=1

ω(X⊺

i·β̂)
(
yi − f(X⊺

i·β̂)
)
Xi·, (8)

where the projection direction û is defined in the following (9) and ω : R → R denotes a weight function
specified in the following Table 1 associated with different link functions.

Model Outcome Type f(z) f ′(z) ω(z) Weighting
linear Continuous z 1 1

logistic Binary ez

1+ez
ez

(1+ez)2
(1+ez)2

ez Linearization

logistic alter Binary ez

1+ez
ez

(1+ez)2 1 Link-specific

Table 1: Definitions of the functions ω and f for different GLMs.

In Table 1, we consider different GLM models and present the link function f(·), its derivative f ′(·), and
the corresponding weight function ω(·). Note that there are two ways of specifying the weights w(z) for
logistic regression, where the linearization weighting was proposed in Guo et al. [7] for logistic regression
while the link-specific weighting function was proposed in Cai et al. [4] for general link function f(·). The
projection direction û ∈ Rp in (8) is constructed as follows:

û = arg min
u∈Rp

u⊺

[
1

n

n∑

i=1

ω(X⊺

i·β̂)f
′(X⊺

i·β̂)Xi·X
⊺

i·

]
u subject to:

∥∥∥∥∥
1

n

n∑

i=1

ω(X⊺

i·β̂)f
′(X⊺

i·β̂)Xi·X
⊺

i·u− xnew

∥∥∥∥∥
∞

≤ ∥xnew∥2µ0

∣∣∣∣∣x
⊺

new

1

n

n∑

i=1

ω(X⊺

i·β̂)f
′(X⊺

i·β̂)Xi·X
⊺

i·u− ∥xnew∥22

∣∣∣∣∣ ≤ ∥xnew∥22µ0.

(9)

It has been established that x̂⊺

newβ in (8) is asymptotically unbiased and normal for the linear model [3], the

logistic model [6, 4]. The variance of x̂⊺

newβ can be estimated by V̂, defined as

V̂ = û⊺

[
1

n2

n∑

i=1

(
ω(X⊺

i·β̂)
)2

σ̂2
iXi·X

⊺

i·

]
û with : (10)

σ̂2
i =





1
n

∑n
j=1

(
yj −X⊺

j·β̂
)2

, for linear model

f(X⊺

i·β̂)(1− f(X⊺

i·β̂)), for logistic regression with f(z) = exp(z)/[1 + exp(z)]

. (11)
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Based on the asymptotic normality, the CI for x⊺

newβ is:

CI =
(
x̂⊺

newβ − zα/2

√
V̂, x̂⊺

newβ + zα/2

√
V̂
)
.

Subsequently, for the binary outcome case, we estimate the case probability P(yi = 1 | Xi· = xnew) by

f(x̂⊺

newβ) and construct the CI for f(x⊺

newβ), with f(z) = exp(z)/[1 + exp(z)], as:

CI =
(
f
(
x̂⊺

newβ − zα/2

√
V̂
)
, f

(
x̂⊺

newβ + zα/2

√
V̂
))

.

2.3 Quadratic functional for GLM

We now move our focus to inference for the quadratic functional QA = β⊺

GAβG, where G ⊂ {1, ..., p} and
A ∈ R|G|×|G| denotes a pre-specified matrix of interest. Without loss of generality, we set G = {1, 2, · · · , |G|}.
With the initial estimator β̂ defined in (3), the plug-in estimator β̂⊺

GAβ̂G has the following estimation error,

β̂⊺

GAβ̂G − β⊺

GAβG = 2β̂⊺

GA(β̂G − βG)− (β̂G − βG)
⊺A(β̂G − βG).

The last term in the above decomposition (β̂G − βG)
⊺A(β̂G − βG) is the higher-order approximation error

under regular conditions; thus the bias of β̂⊺

GAβ̂G mainly comes from the term 2β̂⊺

GA(β̂G − βG), which can

be expressed as 2x⊺

new(β̂−β) with xnew = (β̂⊺

GA, 0)⊺. Hence the term can be estimated directly by applying
the linear functional approach in section Linear functional for GLM. Utilizing this idea, Guo et al. [7, 5]
proposed the following estimator of QA,

Q̂A = β̂⊺

GAβ̂G + 2 û⊺

A

[
1

n

n∑

i=1

ω(X⊺

i·β̂)
(
yi − f(X⊺

i·β̂)
)
Xi·

]
, (12)

where ûA is the projection direction defined in (9) with xnew = (β̂⊺

GA, 0
⊺)⊺. Since QA is non-negative if

A is positive semi-definite, we truncate Q̂A at 0 and define Q̂A = max
(
Q̂A, 0

)
. We further estimate the

variance of the Q̂A by

V̂A(τ) = 4û⊺

A

[
1

n2

n∑

i=1

ω2(X⊺

i·β̂)σ̂
2
iXi·X

⊺

i·

]
ûA +

τ

n
, (13)

where σ̂2
i is defined in (11) and the term τ/n with τ > 0 (default value τ = 1) is introduced as an upper

bound for the term (β̂G − βG)
⊺A(β̂G − βG). Then given a fixed value of τ , we construct the CI for QA as

CI(τ) =

(
max

(
Q̂A − zα/2

√
V̂A(τ), 0

)
, Q̂A + zα/2

√
V̂A(τ)

)
.

Now we turn to the estimation of QΣ = β⊺

GΣG,GβG where the matrix ΣG,G is unknown and estimated

by Σ̂G,G = 1
n

∑n
i=1 XiGX

⊺

iG. Decompose the error of the plug-in estimator β̂⊺

GΣ̂G,Gβ̂:

β̂⊺

GΣ̂G,Gβ̂ − βGΣG,GβG = 2 β̂⊺

GΣ̂G,G(β̂G − βG) + β⊺

G(Σ̂G,G − ΣG,G)βG − (β̂G − βG)
⊺Σ̂G,G(β̂G − βG).

The first term β̂⊺

GΣ̂G,G(β̂G − βG) is estimated by applying linear functional approach in Linear functional

for GLM with xnew = (β̂⊺

GΣ̂G,G, 0)
⊺; the second term β⊺

G(Σ̂G,G −ΣG,G)βG can be controlled asymptotically

by central limit theorem; and the last term (β̂G − βG)
⊺Σ̂G,G(β̂G − βG) is negligible due to high-order bias.

Guo et al. [7] proposed the following estimator of QΣ

Q̂Σ = β̂⊺

GΣ̂G,Gβ̂G + 2 û⊺

Σ

[
1

n

n∑

i=1

ω(X⊺

i·β̂)
(
yi − f(X⊺

i·β̂)
)
Xi·

]
,

where ûΣ is the projection direction constructed in (9) with xnew = (β̂⊺

GΣ̂G,G, 0)⊺. We introduce the

estimator Q̂Σ = max(Q̂Σ, 0) and estimate its variance as

V̂Σ(τ) = 4û⊺

Σ

[
1

n2

n∑

i=1

ω2(X⊺

i·β̂)σ̂
2
iXi·X

⊺

i·

]
ûΣ +

1

n2

n∑

i=1

(
β̂⊺

GXi,GX
⊺

i,Gβ̂G − β̂⊺

GΣ̂G,Gβ̂G

)2

+
τ

n
, (14)
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where σ̂2
i is defined in (11) and the term τ/n with τ > 0 is introduced as an upper bound for the term

(β̂G − βG)
⊺Σ̂G,G(β̂G − βG). Then, for a fixed value of τ , we can construct the CI for QΣ as

CI(τ) =

(
max

(
Q̂Σ − zα/2

√
V̂Σ(τ), 0

)
, Q̂Σ + zα/2

√
V̂Σ(τ)

)
. (15)

2.4 Conditional average treatment effects

The inference methods developed for one sample can be generalized to make inferences for conditional
average treatment effects (CATE). From a causality viewpoint, we consider the data set {(Xi·, yi, Di)} for
i = 1, ..., n, where Di ∈ {1, 2} indicates the treatment assigned to the i-th observation. For a new observation
with covariates Xi· = xnew, we define CATE as ∆(xnew) = E(yi|Xi·, Di = 2)− E(yi|Xi·, Di = 1).

We group observations {i : Di = k} into the k-th data sample {(X(k)
i· , y

(k)
i } for k = 1, 2, where 1 ≤ i ≤ nk

and n1 + n2 = n. Subsequently, we rewrite E(yi|Xi·, Di = k) as E[y
(k)
i |X(k)

i = xnew] for k = 1, 2. Using the
GLM model outlined in (2), the CATE can be formulated as

∆(xnew) = E[y
(2)
i |X(2)

i = xnew]− E[y
(1)
i |X(1)

i = xnew] = f(x⊺

newβ
(2))− f(x⊺

newβ
(1)).

Following (8), we construct the bias-corrected point estimators of ̂x⊺

newβ(1) and ̂x⊺

newβ(2), together with

their corresponding variances V̂(1) and V̂(2) as (10). For the first sample (X
(1)
i , y

(1)
i ), where 1 ≤ i ≤ n1, we

use the methods described in equations (8) and (10) to compute the bias-corrected point estimator ̂x⊺

newβ(1)

and the variance estimator V̂(1), respectively. Similarly, for the second sample (X
(2)
i , y

(2)
i ), where 1 ≤ i ≤ n2,

we apply the same procedures to derive the point estimator ̂x⊺

newβ(2) and the variance estimator V̂(2).
The paper Cai et al. [3] proposed to estimate ∆(xnew) by ∆̂(xnew) as follows,

∆̂(xnew) = f( ̂x⊺

newβ(2))− f( ̂x⊺

newβ(1)).

Its variance can be estimated with delta method by:

V̂∆ =
(
f ′( ̂x⊺

newβ(1))
)2

V̂(1) +
(
f ′( ̂x⊺

newβ(2))
)2

V̂(2).

Then we construct the CI for ∆(xnew) as

CI =

(
∆̂(xnew)− zα/2

√
V̂∆, ∆̂(xnew) + zα/2

√
V̂∆

)
.

2.5 Inner product of regression vectors

The paper Guo et al. [5], Ma et al. [9] have investigated the CI construction for β
(1)⊺
G Aβ

(2)
G , provided with a

pre-specified submatrix A ∈ R|G|×|G| and the set of indices G ⊂ {1, ..., p}. With β̂(1) and β̂(2) denoting the

initial estimators fitted on first and second data sample via (3), respectively, the plug-in estimator β̂
(1)⊺
G Aβ̂

(2)
G

admits the following bias,

β̂
(1)⊺
G Aβ̂

(2)
G − β

(1)⊺
G Aβ

(2)
G = β̂

(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
+ β̂

(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)

−
(
β̂
(1)
G − β

(1)
G

)⊺

A
(
β̂
(2)
G − β

(2)
G

)
.

The key step is to estimate the components β̂
(2)⊺
G A

(
β̂
(1)
G − β

(1)
G

)
and β̂

(1)⊺
G A

(
β̂
(2)
G − β

(2)
G

)
, since the last

term (β̂
(1)
G −β

(1)
G )⊺A(β̂

(2)
G −β

(2)
G ) is negligible due to high-order bias. We propose the following bias-corrected

estimator for β
(1)⊺
G Aβ

(2)
G

̂
β
(1)⊺
G Aβ

(2)
G = β̂

(1)⊺
G Aβ̂

(2)
G +û⊺

1

1

n1

n1∑

i=1

ω(X
(1)⊺
i· β̂(1))

(
y
(1)
i − f(X

(1)⊺
i· β̂(1))

)
X

(1)
i·

+ û⊺

2

1

n2

n2∑

i=1

ω(X
(2)⊺
i· β̂(2))

(
y
(2)
i − f(X

(2)⊺
i· β̂(2))

)
X

(2)
i· .

(16)
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Here û1 represents the projection direction computed in (9), using the first sample data and xnew =

(β̂
(2)⊺
G A, 0)⊺. Similarly, û2 is the projection direction derived from the second sample data, using xnew =

(β̂
(2)⊺
G A, 0)⊺. The corresponding variance of

̂
β
(1)⊺
G Aβ

(2)
G , when A is a known positive definite matrix, is

estimated as
V̂A(τ) = V̂(1) + V̂(2) +

τ

min(n1, n2)
,

where V̂ (k) is computed as in (10) for the k-th regression model (k = 1, 2) and the term τ/min(n1, n2) with

τ > 0 is introduced as an upper bound for the term (β̂
(1)
G − β

(1)
G )⊺A(β̂

(2)
G − β

(2)
G ).

We also consider the case of unknown A = ΣG,G. As a natural generalization, the quantity β
(1)⊺
G ΣG,Gβ

(2)
G

is well defined if the two regression models in (2) share the design covariance matrix Σ = EX
(1)
i· X

(1)⊺
i· =

EX
(2)
i· X

(2)⊺
i· . We follow the above procedures by replacing A with Σ̂G,G = 1

n1+n2

∑n1+n2

i=1 Xi,GX
⊺

i,G where X

is the row-combined matrix of X(1) and X(2). The variance of
̂

β
(1)⊺
G ΣG,Gβ

(2)
G is now estimated as

V̂Σ(τ) = V̂(1) + V̂(2) +
1

(n1 + n2)2

n1+n2∑

i=1

(
β̂
(1)⊺
G Xi,GX

⊺

i,Gβ̂
(2)
G − β̂

(1)⊺
G Σ̂G,Gβ̂

(2)
G

)2

+
τ

min(n1, n2)
.

We then construct the CI for β
(1)⊺
G Aβ

(2)
G as

CI(τ) =





(
̂

β
(1)⊺
G Aβ

(2)
G − zα/2V̂A(τ),

̂
β
(1)⊺
G Aβ

(2)
G + zα/2V̂A(τ)

)
if A is specified

(
̂

β
(1)⊺
G ΣG,Gβ

(2)
G − zα/2V̂Σ(τ),

̂
β
(1)⊺
G ΣG,Gβ

(2)
G + zα/2V̂Σ(τ)

)
A = ΣG,G is unknown.

2.6 Distance of regression vectors

We denote γ = β(2) − β(1) and its initial estimator γ̂ = β̂(2) − β̂(1). The quantity of interest is the distance
between two regression vectors γ⊺

GAγG, given a pre-specified submatrix A ∈ R|G|×|G| and the set of indices
G ∈ {1, ..., p}. The bias of the plug-in estimator γ̂⊺

GAγ̂G is:

γ̂⊺

GAγ̂G − γ⊺

GAγG = 2 γ̂⊺

GA
(
β̂
(2)
G − β

(2)
G

)
− 2 γ̂⊺

GA
(
β̂
(1)
G − β

(1)
G

)
− (γ̂G − γG)

⊺
A (γ̂G − γG) .

The key step is to estimate the error components γ̂⊺

GA
(
β̂
(1)
G − β

(1)
G

)
and γ̂⊺

GA
(
β̂
(2)
G − β

(2)
G

)
in the above

decomposition. We apply linear functional techniques twice here, and propose the bias-corrected estimator:

γ̂⊺

GAγG = γ̂⊺

GAγ̂G − 2 û⊺

1

1

n1

n1∑

i=1

ω(X
(1)⊺
i· β̂(1))

(
y
(1)
i − f(X

(1)⊺
i· β̂(1))

)
X

(1)
i·

+ 2 û⊺

2

1

n2

n2∑

i=1

ω(X
(2)⊺
i· β̂(2))

(
y
(2)
i − f(X

(2)⊺
i· β̂(2))

)
X

(2)
i· ,

(17)

where û1 and û2 are the projection directions defined in (9) with xnew = (γ̂⊺

GA,0)
⊺
but on two different

sample data respectively. The second term on right-hand-side of (17) is to estimate −2x⊺

new(β̂
(1)
G −β

(1)
G ) and

the third term on right-hand-side of (17) is to estimate −2x⊺

new(β̂
(2)
G − β

(2)
G ).

To maintain non-negativity of distance, we define γ̂⊺

GAγG = max
{
γ̂⊺

GAγG, 0
}

and estimate its corre-

sponding asymptotic variance as

V̂A(τ) = 4 V̂(1) + 4 V̂(2) +
τ

min(n1, n2)
,

where V̂(k) is computed as in (10) for the k-th regression model (k = 1, 2) and the term τ/min(n1, n2) with
τ > 0 is introduced as an upper bound for the term (γ̂G − γG)

⊺A(γ̂G − γG). With asymptotic normality, we
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construct the CI for γ⊺

GAγG as

CI(τ) =

(
max

(
γ̂⊺

GAγG − zα/2

√
V̂A(τ), 0

)
, γ̂⊺

GAγG + zα/2

√
V̂A(τ)

)
.

We further consider the unknown matrix A = ΣG,G and construct the point estimator ̂γ⊤
GΣG,GγG in

a similar way as outlined in (17). In this case, the submatrix A is substituted with Σ̂G,G, where Σ̂G,G =
1

n1+n2

∑n1+n2

i=1 Xi,GX
⊺

i,G with X as the row-combined matrix of X(1) and X(2). Its corresponding asymptotic
variance is

V̂Σ(τ) = 4 V̂(1) + 4 V̂(2) +
1

(n1 + n2)2

n1+n2∑

i=1

(
γ̂⊺

GXi,GX
⊺

i,Gγ̂G − γ̂⊺

GΣ̂G,Gγ̂G

)2

+
τ

min(n1, n2)
.

Next we present the CI for γ⊺

GΣG,GγG.

CI(τ) =

(
max

(
̂γ⊺

GΣG,GγG − zα/2

√
V̂Σ(τ), 0

)
, ̂γ⊺

GΣG,GγG + zα/2

√
V̂Σ(τ)

)
.

3 Others

3.1 Construction of Projection Direction

The construction of projection directions are key to the bias correction step, see (8). In the following, we
introduce the equivalent dual problem of constructing the projection direction. The constrained optimizer

û ∈ Rp can be computed in the form of û = − 1
2

[
v̂−1 +

xnew

∥xnew∥
2

v̂1

]
, where, v̂ ∈ Rp+1 is defined as

v̂ = argmin
v∈Rp+1

{
1

4n
v
⊺
H

⊺X⊺Diag(w)Diag(f ′)XHv + x⊺

newHv + λn ∥xnew∥2 · ∥v∥1
}
, (18)

with H =
[

xnew

∥xnew∥
2

, Ip×p

]
∈ Rp×(p+1), w =

(
ω(X⊺

1 β̂), ..., ω(X
⊺

n β̂)
)⊺

and f
′ =

(
f ′(X⊺

1 β̂), ..., f
′(X⊺

n β̂)
)⊺

. We

refer to Proposition 2 in Cai et al. [2] for the detailed derivation of the dual problem (18). In this dual

problem, when Σ̂ is singular and the tuning parameter λn > 0 gets sufficiently close to 0, the dual problem
cannot be solved as the minimum value converges to negative infinity. Hence we choose the smallest λn > 0
such that the dual problem has a finite minimum value. Such selection of the tuning parameter dated at
least back to Javanmard and Montanari [8].
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